Dryland Ecohydrology
School of Life Sciences
Welcome! Our lab conducts research on climate, ecology and hydrology in arid and semiarid ecosystems.
The Mojave Desert is one of the great places in the United States to begin to understand relationships between climate, environment and life. Our desert basin receives 130 mm (5.0") of rainfall annually, has average maximum temperatures of 41°C (105°F) in summer, and in Las Vegas supports a population of 2.5+ million people. Water resources and ecosystem services throughout this region are realized across many ecosystem types, from low elevation desert shrubland to high elevation subalpine forest. The goals of our research are to better understand the physical mechanisms shaping these dryland ecosystems, to forecast future conditions across local and regional areas, and to enhance planning and preparedness for future changes in climate and environment.
Our Research
Research in the UNLV Dryland Ecohydrology Lab integrates multiple data types including long-term measurements, remote sensing and field experiments to gain insight on ecohydrological mechanisms and to forecast future conditions. We are always interested in new collaborations, so feel free to contact us!
Dryland Ecohydrology
Dryland ecosystems are sensitive to the interactive effects of precipitation and temperature, landscape and environmental factors, disturbances and management, and vegetation characteristics. Our research seeks to identify the mechanisms that govern these ecological systems.
Climate dynamics, multiyear and extreme events
Extreme events are not just tornadoes and hurricanes! The desert, woodland and forest ecosystems that we study can be influenced in meaningful ways by regular variation in climate, conditions that persistover multiple years, and also by patterns of extreme climate events. We are interested in determining how the characteristics of these events portends to their ecological significance, and developing ways for scientists and land managers to prepare for multiple climate possibilities across the diverse landscapes that they work in.
Tree regeneration and forest and woodland persistence
Forecasts call for a 50% decline in climatic favorability for juvenile ponderosa pine survival by the end of the century, without adding in the effects of additional disturbances such as fire and insect outbreaks. Along with a group of experts in the field, our lab is working to understand the mechanisms and consequences of declining regeneration in semiarid forests and woodlands. Even more importantly, we are working to determine how human actions can help to combat and limit these declines.
Computational modeling
Mechanistic models are a valuable tool for making ecological predictions. Our lab utilizes both low-dimensional and complex ecosystem water balance models to sharpen our understanding of ecological responses to environmental change across the diverse landscapes of western North America.
Climate change
Climate change is going to replace the world as we know it with one that has a slightly- to substantially-differing climate. We can predict and prepare for future and ongoing climate change using different scientific approaches and perspectives. Identifying and forecasting ecologically meaningful changes in climate is one of our favorite aspects of scientific research.
Opportunities
Although I am not currently recruiting personnel for the lab, please feel encouraged to contact me using the form below, or email directly.